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Hsin Chi and Hsi Liu (1985) Two New Methods for the Study of Insect 
Population Ecology. Bull. Inst. Zool., Academia Sinica 24(2): 225-240. Based on the         
stage-frequency  distribution, a multiple column matrix was used to express the age - 
stage-structure of animal populations with metamorphosis. Using this new method, 
the growth  process of insect  and mite populations (both female and male were 
included)  can  be  studied  with proper stage grouping. Algorithms of population 
growth  and  the  calculation of intrinsic  rate of increase and stable age-stage- 
distribution were described in detail.  

For  the simulation work of field population ecology, a multidimensional matrix 
was  used to display the spatial distribution of host plants and the age-stage-structure 
of  pest  population.  Computer programs were designed to simulate the growth and 
dispersion  of  field  population  at  the same time. These methods made a way to 
approach to the agroecosystem simulation. 
 

  In  the last forty years, since the matrix 
was used in the study of population growth 
( Lewis 1942, Leslie  1945, 1948 ), the age 
structure of  a population was given in a  
single column matrix (column vector), and  
only the female population was considered. 
This method has been used in many works  
( Pennycuick et al.1968, Longstaff 1977, Chi 
1981, Carey1982 ). In using the single column 
matrix, one  had to always handle all the  
individuals in one age group as if they were 
in the same  developmental stage. However,  
the significant stage overlapping phenomenon 
has been frequently observed in the study of 
life cycles for animal populations with 
different developmental stages, such as in 
many insect and mite species. As a matter 
of fact, this overlapping phenomenon occurs  
in both discrete models and continuous  
 
 

models, using either calendar time or physio- 
logical time. This fact limits the use of  
Lewis-Leslie matrix in insect and mite popu- 
lation ecology, and points out that the stage- 
grouping by cutting the life span into stages 
(e.g. Carey 1982) without considering the 
overlapping phenomenon must be used care- 
fully. Some authors had developed analytical 
methods for stage grouping ( Lefkovitch 1965, 
Manly 1974, Van Straalen 1982 ),  however,       
this overlapping phenomenon had not been 
included. From the biological viewpoint, the 
stage overlapping is resulted from the dif- 
ferences in developmental rates of individuals 
reproduced at the same day. Based on this  
biological fact, we developed a new method 
using multiple column matrix to express the  
age-stage-structure of population. In this 
method, both male and female can be 
included. The details about this new method
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are discussed in this paper. 
   The another problem in population 
ecology is that the growth and dispersion of 
population had been almost always separately   
studied. This can be seen in many simulation 
models,  where  only  the relative density 
(insect/plant) had been used to represent the  
population. They gave the false impression 
that the individuals were uniformly distributed     
in space and the spatial distribution had no 
relation to population growth. Many authors 
had tried to study the growth of population 
with respect to distribution or used computer 
mapping to show the spatial distribution 
(Ashley1976, Fulton and Haynes 1975, Haynes 
and Tummala 1978, Wellington et al. 1975, 
Taylor and Taylor 1977). Among them,  
Taylor and Taylor (1977) gave a spatial 
concept for population and treated the  
anatomy of a real population as being in  
three dimensions, latitude×longitude through 
time. This concept is helpful in understanding 
the real population. For the study on this 
problem, we used a multidimensional matrix 
to express the spatial distribution and the 
age-stage-structure of population, and tried to  
simulate the growth and dispersion of popu- 
lation at the same time. The basic concept 
of this method is also discussed in this paper. 
 

THE MULTIPLE COLUMN 
MATRIX MODEL 

 
(1) The age-stage-structure matrix 
 
   The basic idea of the multiple column 
matrix model is displayed in Fig. 1. In this 
method, the population structure is given in   
matrix N with k rows and m columns-k is  
the number of age groups, m is the number 
of stages. In explanation of this new method 
an assumed matrix N with ten rows and five  
columns is used. Each column of matrix N 
represents one stage, e.g. egg, larva, pupa, 
female and male. Then, n i j gives the number 
of individuals in age i and stage j. After one  
age interval, individuals in age i and stage j 
may grow to age i+1 but still be in the same  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The  age-stage-structure matrix (N) of 

a population. Elements out of the  
range of stage distribution are denoted 
by “— ”. (E-egg stage, L-larval stage, 
P-pupal stage, F-female, M-male). 

 
 
stage j, or develop to stage j+1 and then be 
in age i+1. The last two columns, female 
and male, are both developed from the last  
preimaginal stage-the pupa. A dash “— ” 
is used where an element is nonexistent (out 
of the range of stage distribution), this also  
make the stage distribution more clear. All 
such elements will be set to zero in the 
calculation of the following sections. 
 
(2) Age-stage-specific growth rate, developmental 

rate and fecundity 
 

In The Lewis-Leslie matrix only age- 
specific survival rates and fecundity will be 
considered. In the present paper, we take the 
stage differentiation into consideration. There- 
fore, there are three factors which relate to  
all individuals, namely: age-stage-specific 
growth rate, developmental rate and fecundity.  
In order to make this method more com- 
prehensible and to facilitate computer pro- 
gramming, we set these three factors into 
three matrices of the same dimension (Fig. 2). 
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  Fig. 2.  The age-stage-specific  growth  rate matrix (G), developmental rate matrix 
          (D) and fecundity matrix (F). In  matrix G,  g i j is the  probability that an 

individual from ( i, j ) will grow to ( i＋1, j ) after one age interval. In matrix 
D, d i j is the probability that an individual  from ( i, j) will develop to ( i＋1, 
j＋1 ) after one age interval; in  column  PM, d i  j is the probability that an 
individual from ( i, j－1 ) will develop to ( i＋1, j＋1 ) ( from pupa to male ). 
In matrix F,  f i  j is the number  of  offsprings  that  will be reproduced by 
every individual in age i and stage j. 

 
 

In matrix G, the element g i j (the age-stage- 
specific growth rate) is the probability that 
an individual in age i and stage j will grow 
to age i＋1 but still be in stage j after one  
age interval. In matrix D, d ij (the age-stage-   
specific developmental rate) is the probability 
that an individual in age i and stage j will 
develop to stage  j＋1 and be in age i＋1 after 
one age interval. Because female and male  
will not develop to further stages, there are 
no d i j for them. But the pupae can either 
develop into a female or male. We set the 
probability that a pupa will develop into a 
female in column PF and the probability for  
a male in column PM, thus the column m— 1  
(PM) contains the values for pupa to male, 
i. e. from ni(m-2) to n (i+1)m (Fig. 2). In matrix,  
F, f i j (the age-stage-specific fecundity) are the 
number of offsprings that will be reproduced 
by every individual of n i j. In general, only 
female have a f i j 0, and the other≧  f i j have 
the value zero. All elements of these three 
matrices (G, D and F) can be obtained in the 

basic life table study. 
 
(3) Population growth 
 

When the age-stage-structure of a popu- 
lation at time  t is known, the age-stage- 
structure for time t+1 can be obtained through 
the combined operation of G , D and F: 
               

G, D, F 
N t                N t+1 

The detail calculation procedures are: 
n 11 ( t + 1 ) ＝  (   n i j t f i j  ) 

     n i j ( t + 1 )＝n ( i – 1 ) j t g ( i – 1 ) j 

                     for j ＝1 and i ＞1, 
     n i j ( t + 1 ) ＝n ( i -1 ) j t g ( i – 1 ) j＋ 
                n ( i - 1) ( j – 1 ) t d ( i – 1 ) ( j – 1 ) 

                       for 1＜j＜m, 
     n i j ( t + 1 ) ＝n ( i – 1 ) j t g ( i – 1 ) j＋ 
                n ( i – 1 ) ( j – 2 ) t d ( i – 1 ) ( j – 1 ) 

                    for j＝m ( the male ). 
We need only sum the elements in each 

row to get the age-structure, and sum the

∑
=

k

i 1
∑

=

m

j 1
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elements in each column to get the stage-    
structure (Fig. 1). The total population size  
is given by    (   n i j ). 
 

With the total population size, the age- 
structure and stage-structure, it is easy 
to calculate the percent age distribution and 
percent stage distribution. 
 
(4) Intrinsic rate of increase 
 
    The intrinsic rate of increase can be 
calculated indirectly with these G , D and F 
matrices. At first, the age-specific survival 
rate (l x) and the age-specific fecundity (m x) 
must be derived from matrices G , D and F. 
For this, the age-stage-specific survival rate  
(matrix S) must be obtained according to the 
following procedures: 
let   s 11=1 then 
     s ij= s (i-1) j g (i-1) j 
                  for j=1 and i＞1, 
     s ij= s (i-1)j g (i-1)j＋s (i-1) (j-1) d (i-1) (j-1) 
                  for 1＜j ＜m , 
     s ij= s (i-1)j g (i-1)j＋s (i-1) (j-2) d (i-1) (j-1) 

                         for j=m (the male). 
This s ij gives the survivorship for the newborn 
individual to age i and stage j. 
   To obtain the age-specific survival rate  
(l x),  the sum of each row of matrix S is then 
calculated from 
 
l x =    sx j. 
 
    The age-specific fecundity (m x) can be 
calculated for each age group as follows: 
 
m x = (   sx j fxj ) /    sx j. 
 

By using the well -known formula: 
   e-rx lx mx =1 (Lotka 1913), the intrinsic rate  
of increase (r) can be obtained, then the finite  
rate of increase (λ) and the mean length of  
a generation (T ). 
   It is easy to verify that︰ 
 
     e-rx lx mx =  ( e-rx   fxj sx j ) =1. 

Therefore, the intrinsic rate (r) can be also 
calculated directly from 
 
        ( e-rx     fxj sx j ) =1. 
(5) Age-stage-specific mo rtality (Matrix Q) 

and the distribution of mortality  
(Matrix P) 

 
The age-stage-specific mortality (q i j) gives 

the probability that an individual in age i 
and stage j will die after one age interval﹔ 
however, the distribution of mortality (p i j) 
is the probability that a newborn individual 
will die in age i and stage j . According to  
the previous sections, an individual of age i 
and stage j may grow to age i＋1 and still be 
in the same stage, or may develop to stage 
j＋1 and then be in age i＋1. The age-stage-  
specific mortality can be calculated as follows 
   q ij =1－g  ij－d ij               for j＜m－2, 
   q ij =1－g  ij－d i j－d i(j+1)      for j=m－2, 
   q ij =1－g  ij                      for j＞m－2, 

The distribution of mortality over all 
ages and stages can be easily obtained by 
   p i j=q  ij s  ij. 

Furthermore, S p  i 1, S p i  2, … , S p i m give 
the probabilities that a newborn individual  
will die in stage 1, 2, … , respectively.  
These stage mortalities tell us the occurrence 
of mortality in each stage during the life 
history. 
 
(6) Stable age-stage-distribution 
 
   As t? 8, the age-stage-structure will settle 
down to a stable distribution and we have 
    N t+1= ? Nt. 
    The stable age-stage-distribution can be 
obtained from the following equations： 
for j = 1 (the first column) 
     ? n21= g11n 11 
     ? n31= g21n21           .           .           .           .           .           . 
     ? nk1= g(k-1)1n(k-1)1, 
for 1＜j＜m [the second to (m－1)th column] 
      ? nij=d (i-1) (j-1) n (i-1) (j-1)＋g (i -1) jn (i-1)j 

∑
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j 1
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for j=m (the last column)              time and survivorship of each preadult stages,                                                             
                                            100 fresh leaves of Brassica oleracea L. var.                  

? nij=d (i-1) (j-1) n (i-1) (j-2)＋g (i-1) jn (i-1) j 

 
To calculate the stable age-stage-distri- 

bution, we set n 11=1, and then derive the 
frequencies for all other ages and stages colum    
by column using the above equations. A 
computer program for this tedious calculation 
is inevitable. As the stable age-stage-distri- 
bution is obtained, the stable age distribution.  
and the stable stage distribution can be easily 
found by summation. For populations with  
stage differentiation, the stable stage distri- 
bution is obviously more interesting and  
meaningful than the stable age distribution. 
 

AN EXAMPLE WITH DIAMONDBACK 
MOTH 

 
(1) Material and Method 
 
   A laboratory population of diamondback 
moth, Pultella xylostella (L.), was used in this  
experiment. For the study on developmental 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

acephala DC, each with one newly laid egg, were 
kept separately in petri dishes (9 cm dia.) until 
pupation. The fresh leaves were afforded every 
day and their stems were wrapped with wet  
cotton-wool to maintain the freshness of the  
leaves. The developmental and survival rate 
of eggs, four larval instars and pupae were 
recorded daily. When the pupae appeared, each 
pupa was removed into a finger tube (1cm 
dia., 4 cm height), then the developmental time  
and sex were recorded as the adults emerged. 

The emerged adults were released by pairs 
into a plastic cylinder (15 cm dia., 20cm 
height) with a fresh leaf for egg laying. A 
small glass tube (1 cm dia., 1 cm height) with 
30% honey solution was served as food for  
adults. All eggs laid in the previous day 
were counted and the number of surviving 
adults were recorded. 
   The whole life table studies were con-  
ducted in the incubators (25℃, 60% RH). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. Stage-frequency distribution of P. xylostella at 25℃. (E-egg stage, L1-first 
larval instar, L2-4-second to fourth larval instars, P-pupal stage, F- female, 

M-male). 
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(2) The stage-frequency distribution             from  birth to death  presented a  significant       
   In order to compare the result with the  
glasshouse experiment, the data were grouped 
into 6 stages, namely： egg, L1 (1st instar  
larva), L2- 4 ( 2nd-4th instar larva), pupa, 
female and male. The stage frequency curve 
 

Matrix   G 
 E    L1    L2-4    P     F     M 
1.00   －    －     －    －    － 
1.00   －    －     －    －    － 

0    －    －    －     －    － 
－   1.00   －    －     －    － 

    －    .16   －    －     －    － 
－     0   1.00   －     －    － 

  －    －   1.00   －     －    － 
  －    －   1.00   －     －    － 
－    －    .98   －     －    － 
－    －    .98   －     －    － 

 －    －    .87  1.00     －    － 
 －    －    .62  1.00     －    － 
 －    －    .04  1.00     －    － 
 －    －   1.00  1.00     －    － 
 －    －     0    .98     －    － 

  －    －    －    .77    1.00   － 
    －    －    －    .30    1.00   1.00 
    －    －    －    .09    1.00   1.00 
    －    －    －   1.00    1.00   1.00 
    －    －    －     0     1.00   1.00 
    －    －    －    －     1.00    .95 
    －    －    －    －     1.00    .94 
    －    －    －    －     1.00   1.00 
    －    －    －    －     1.00    .94 
    －    －    －    －     1.00   1.00 
    －    －    －    －     1.00   1.00 
    －    －    －    －     1.00   1.00 
    －    －    －    －      .93   1.00 
    －    －    －    －      .96    .94 
    －    －    －    －      .92    .80 
    －    －    －    －      .96    .67 
    －    －    －    －      .91    .63 
    －    －    －    －      .90   1.00 
    －    －    －    －     1.00   1.00 
    －    －    －    －      .89   1.00 
    －    －    －    －      .94    .80 
    －    －    －    －      .88    .75 
   －    －    －    －      .71   1.00 
   －    －    －    －      .80   1.00 
－    －    －    －      .75    .67 
－    －    －    －     1.00   1.00 

    －    －    －    －     1.00    .50 
－    －    －    －     1.00   1.00 
－    －    －    －     1.00     0 
－    －    －    －     1.00    － 

   －    －    －    －      .83    － 
－    －    －    －     1.00    － 
－    －    －    －      .60    － 
－    －    －    －      .67    － 

overlapping phenomenon (Fig. 3). This points  
to the fact that, when only the means are 
used to present the developmental times or 
a single curve (lx) is plotted for the survivor- 
ship, many important features are neglected. 
 

Matrix    D 
E     L1     L2-4    PF    PM 
0     －     －      －    －    － 
0     －     －      －    －    － 
.94    －     －     －    －    － 
－     0     －     －    －    － 
－     .82    －    －     －    － 
－    1.00    0     －     －    － 
－     －     0     －    －     － 
－     －     0    －     －     － 
－     －     0    －     －     － 
－     －    .02    －     －    － 
－     －    .12     0     0     － 
－     －    .38     0     0     － 
－     －    .96     0     0     － 
－     －     0     0      0     － 
－     －   1.00    .02     0     － 
－     －    －    .10     .12    － 
－     －    －    .46     .22    － 
－     －    －    .45     .45    － 
－     －    －     0      0     － 
－     －    －   1.00      0    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 
－     －    －    －     －    － 

－    －    －    －       0    － 
      
    Fig. 4. The age-stage-specific growth rate  
          (Matrix G) of P. xylostella at 25 .℃  
          (E-egg stage, L1-first larval instar, 
          L2-4-second to fourth larval instars, 
          P-pupal stage, F-female,M-male). 

 

－     －    －    －     －    － 
 

Fig. 5. The age-stage-specific developmental  
          rate (Matrix D) of P. xylostella at  
          25 . Column PF contains the de℃ - 
          velopmental rates from pupal stage 
          to female, column PM contains the 
          rates from pupal stage to male. 
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(3) The matrices G, D, F, S and P 
   The age-stage-specific growth rate, de- 
velopmental rate, and fecundity of P. xylostella 
are given in Fig. 4, Fig. 5 and Fig. 6, respect- 
tively. All of these three matrices have 50 
rows and six columns. The matrix S (the 
age-stage-specific survival rate, Fig. 7) and the 

 
Matrix   F 

 
E    L1    L2-4    P     F     M 
0    －    －     －    －    － 
0    －    －     －    －    － 
0    －    －     －    －    － 
－    0    －     －    －    － 

    －    0    －     －    －    － 
－    0     0     －    －    － 

  －    －    0     －    －    － 
  －    －    0     －    －    － 
－    －    0     －    －    － 
－    －    0     －    －    － 

 －    －    0     0     －    － 
 －    －    0     0     －    － 
 －    －    0     0     －    －      
 －    －    0     0     －    － 
 －    －    0     0     －    － 

  －    －    －    0      0    － 
    －    －    －    0    11.00   0 
    －    －    －    0    15.00   0 
    －    －    －    0    33.36   0 
    －    －    －    0    36.96   0 
    －    －    －    －   25.38   0 
    －    －    －    －   26.00   0 
    －    －    －    －   15.59   0 
    －    －    －    －   12.48   0 
    －    －    －    －   12.90   0 
    －    －    －    －   10.59   0 
    －    －    －    －    7.55   0 
    －    －    －    －    6.21   0 
    －    －    －    －    5.67   0 
    －    －    －    －    5.23   0 
    －    －    －    －    4.88   0 
    －    －    －    －    3.83   0 
    －    －    －    －    2.62   0 
    －    －    －    －    2.11   0 
    －    －    －    －    1.58   0 
    －    －    －    －    2.53   0 
    －    －    －    －    1.81   0 
   －    －    －    －    1.71   0 
   －    －    －    －    1.70   0 
－    －    －    －    1.13   0 
－    －    －    －    1.50   0 

    －    －    －    －    1.33   0 
－    －    －    －     .67   0 
－    －    －    －     .67   0 
－    －    －    －      0   － 

   －    －    －    －      0   － 
－    －    －    －      0   － 
－    －    －    －      0   － 
－    －    －    －      0   － 
－    －    －    －      0   － 
 

Fig. 6. The age-stage-specific fecundity (Matrix 
       F) of P. xylostella at 25℃. (E-egg stage, 
       L1-first larval instar, L2- 4-second to 
       fourth larval instars, P-pupal stage, F- 
       female, M-male). 

 
matrix P (the distribution of mortality, Fig. 
8) are obtained according to the method of 
the previous sections. It is interesting to  
point out, that if the age-stage-specific survival 
rate is plotted against age, it gives exactly 
the same curve of stage frequency distribution 
(Fig. 3). 
 

Matrix   S 
 

E    L1    L2-4    P     F     M 
1.00   －    －     －    －    － 
1.00   －    －     －    －    － 
1.00   －    －     －    －    － 
－    .94   －     －    －    － 

    －    .94   －     －    －    － 
－    .15    .78    －    －    － 

  －    －    .93    －    －    － 
  －    －    .93    －    －    － 
－    －    .93    －    －    － 
－    －    .91    －    －    － 

 －    －    .89    .02   －     － 
 －    －    .78    .13   －     － 
 －    －    .48    .43   －     －      
 －    －    .02    .89   －     － 
 －    －    .02    .89   －     － 

  －    －    －     .89   .02    － 
    －    －    －     .69   .11    .11 
    －    －    －     .20   .43    .26 
    －    －    －     .02   .52    .35 
    －    －    －     .02   .52    .35 
    －    －    －    －     .54   .35 
    －    －    －    －     .54   .33 
    －    －    －    －     .54   .31 
    －    －    －    －     .54   .31 
    －    －    －    －     .54   .30 
    －    －    －    －     .54   .30 
    －    －    －    －     .54   .30 
    －    －    －    －     .54   .30 
    －    －    －    －     .50   .30 
    －    －    －    －     .48   .28 
    －    －    －    －     .44   .22 
    －    －    －    －     .43   .15 
    －    －    －    －     .39   .09 
    －    －    －    －     .35   .09 
    －    －    －    －     .35   .09 
    －    －    －    －     .31   .09 
    －    －    －    －     .30   .07 
   －    －    －    －     .26   .06 
   －    －    －    －     .19   .06 
－    －    －    －     .15   .06 
－    －    －    －     .11   .04 

    －    －    －    －     .11   .04 
－    －    －    －     .11   .02 
－    －    －    －     .11   .02 
－    －    －    －     .11   － 

   －    －    －    －     .11   － 
－    －    －    －     .09   － 
－    －    －    －     .09   － 
－    －    －    －     .06   － 
－    －    －    －     .04   － 
 

Fig. 7. The age-stage-specific survival rate 
(Matrix S) of P. xylostella at 25℃. 
(E-egg stage, L1-first larval instar,           
L2-4-second to furth larval instars,  

 P-pupal stage, F-female, M-male). 
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  Fig. 8. The distribution of mortality (Matrix 
         P) of P. xylostella at 25℃. (E-egg  
         stage, L1-first larval instar, L2-4-second  
         to fourth larval instars, P-pupal stage,     
         F-female, M-male). (There are round- 

off errors). 
 
(4) The intrinsic rate of increase and the stable 
   age-stage-distribution of P. xylostella at  
   25℃. 
   With matrices F and S the intrinsic rate 
of increase are obtained by using formulae 

TABLE 1 
The population parameters of 

P. xylostella at 25℃ 
 
The intrinsic rate of increase (r)      0.2229 
The net reproductive rate (R0)      120.93 
The mean generation time (T)       21.51 
The finite rate of increase (λ)        1.2497 
 
Σe-rx lx m x=1  and  Σ(e-rxΣs x j f  xj)=1.  The  
same results are obtained from both formulae. 
The detail data are given in Table 1. 
   The stable age-stage-distribution of P. 
xylostella  is calculated according to the 
procedure of the previous section and is given 
in Fig. 9. In Fig. 9 the stable age distribution 
and stable stage distribution are also listed. 
 

THE MULTIDIMENSIONAL 
MATRIX MODEL 

 
(1) Basic concept 
 

The basic concept of the spatial distri- 
bution of host plants and the age-structure of  
insects on them is displayed in Fig. 10. 
According to Fig. 10, if we use a three 
dimensional matrix N to represent this field  
population, then the element n6,3,1  gives the 
number of individuals aged six and on the  
host plant (or in the habitat) located at third 
column and first row. For example, n6,3,1=5 
denotes that there are five individuals aged 
six on that host plant. Using this concept we 
can set the total field population into such a 
three dimensional matrix. Each hostplant has 
its own subpopulation and the spatial location 
is given by the subscripts. 

However, for those animals with meta- 
morphosis, such as insects and mites, the  
inadequacy of single column matrix for  
population structure has been discussed in  
previous sections. Combining this concept pf  
multidimensional matrix for spatial distri- 
bution and that of multiple column matrix 
for age-stage-structure, a four dimensional 
matrix is used to represent the age-stage- 
structure of insect population in field. Thus, 
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Fig. 9. The stable age-stage-distribution, stable age-distribution and stable 
      stage-distribution  of  P. xylostella at 25℃. ( E-egg stage, L1-first 

larval  instar, L2-4-second  to fourth  larval instars, P-pupal stage, 
F-female, M-male). (There are round-off errors). 
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Fig. 10. The basic concept of multidimensional matrix model for field 
        population. n6 ,3 ,1=5 denotes  that  there are five individuals 

aged  six on the host plant located at third column and  first 
row. Each “? ” denotes a host plant. 

 
n8 ,4 ,3 ,1=5 denotes that there are five indivi- 
duals aged eight and in fourth stages on the  
plant located at third column and first row. 
This four dimensional matrix can not be 
displayed with a figure. Due to the com- 
plexity of data, computer is an inevitable tool 
in this work. Two large computer programs 
have been designed in FORTRAN V, one for  
three dimensional matrix model ( program 
TDMSLBH ) and the other for four dimen- 
sional matrix model ( program FDMSLBH ). 
In order to avoid the complicate subscripts 
of n8  , 4  ,3  , 1 , the expression of FORTRAN 
language can be used. For example, the  
general form of elements in population matrix 
is written as POPU ( AGE,COLUMN,ROW ) 
in TDMSLBH, or as POPU(AGE,STAGE 
COLUMN,ROW ) in FDMSLBH. Thus, POPU 
(I, J, K, L)=5  denotes that there are five  
individuals in age I and stage J on the host- 
plant located at row L and column K. These 

 
expressions are more readable, but yet have 
not been generally used. 

In accompany with matrix POPU, another 
matrix PLANT ( or HABITAT) is used to 
express the existence of a hostplant or habitat.  
For example, PLANT ( L, K )=0 denotes there 
is no plant located at row L and column K, 
PLANT ( L, K )=1 denotes then the existence 
of a hostplant at row L and column K. 
Using matrix PLANT the configuration of  
field can be determined. 

In the following sections only the general  
features of this new method will be discussed. 
For different insect species and hostplant other  
relevant factors can be inserted to make it  
more suitable for them. 
 
(2) Population growth 
 

If the field population structure at time t 
is known, then the population structure for 
time t＋1 can be obtained through proper 
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calculations. When a single column matrix 
is used for the age structure of each sub- 
population ( in program TDMSLBH ), then the 
simple matrix multiplication can be followed 
in order to find the age structure of each 
subpopulation at time t＋1. For this, a square 
matrix containing age-specific survival rate 
and fecundity is required ( Lewis 1942). 
However, when there is significant stage 
overlapping phenomenon, e. g. in most insect 
and mite populations, the method of multiple 
column matrix should be followed ( in pro- 
gram FDMSLBH ). For this, the age-stage- 
specific growth rate, developmental rate and 
fecundity ( matrices G, D and F ) are required. 
 
(3) The carrying capacity of host plant 
 

The carrying capacity increases generally 
with the growth of host plant. Thus, it is 
necessary to know the carrying capacity 
( array name KVALUE(T) is used in com- 
puter program ) of host plant for each time. 
These time-specific KVALUE(T) can be either 
direct input as real numbers or given with a 
function of time. Here, the unit of KVALUE 
must be properly selected. In our study, a 
fourth instar larva of the diamondback moth, 
P. xylostella, was used as a standard unit. A 
KVALUE(10)=20 means that the carrying 
capacity of host plant at t=10 is equivalent 
to twenty larvae of fourth instar. Although 
the carrying capacity may also depend on 
other factors, for the general introduction 
only the time-specific KVALUE is taken into  
account in this paper. 
 
 
(4) Dispersion 
 

The dispersion of an insect from a host 
plant to other may be density-dependent or 
density-independent and it may be variate  
from stage to stage; furthermore, the dispersal 
ability may be also different among stages. 
For example, the adults of flying insect may 
fly away from a host plant whatever the  
density is high or low. Whereas, a larva will 
crawl to next plant only when the density is 
high ( in comparison with the time-specific 
KVALUE, and the other physical disturbances 
will not be considered ). Here, the density is 

not the sum of total population, a more con- 
vienient expression is the sum of the products  
of the number of individual in each stage 
multiplied by the respective stage-specific 
weighing coefficient (the array name KWEIGH 
is used in program). For practical use, we 
suggest that the stage-specific KWEIGH is to  
be experimentally determined and the dif- 
ference among ages of the same stage can be 
neglected. For example, according to the leaf 
consumption of different larval instars, the 
stage-specific KWEIGH for the fourth larval 
instar is 1, for third is 0.6, for the second is 
0.2 and for all other stages are 0. Then , the  
density of this pest on a host plant (the array 
name KDENSIT is use) can be calculated 
from： 
 
KDENSIT=Σ(KWEIGH(J) × STAGE(J)), 

 
where STAGE(J) is the number of individuals 
in stage J on that host plant. The occurrence 
of density-dependent dispersion depends on 
the value of KDENSIT in comparison with 
KVALUE, the numerical relationship must be  
experimentally determined. 

The dispersal distance depends on the 
behavior ability. For example, an adult of  
diamondback moth can fly to anywhere in a  
field, but a larva may only crawl to one of 
the surrounding plants. To each stage J a 
code can be assigned, this code is used to  
represent the stage-specific dispersal ability 
( the array name DISPAB(J) is used ). The 
direction of dispersal will be determined by  
random number. If an individual fails to find 
a new host plant or the new plant has already 
a high KDENSIT, it will die. As a matter 
of fact, the spatial distribution of a population 
changes  wi th  t ime.  In  TDMSLBH and 
FDMSLBH, the means and variances will be  
calculated and the variance/mean ratios will 
be plotted against time. This gives a pre- 
liminary description of the dynamical change 
of distribution pattern. A mapping subroutine 
can be called at any time when a detail field 
distribution of pest population is needed, this 
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makes the change more comprehensible and 
is especially helpful in teaching entomology. 
 
GLASSHOUSE RELEASE EXPERIMENT 

AND COMPUTER SIMULATION 
 
(1) Material and method 
 

Fifteen pairs of adults of diamondback 
moth, newly emerged from pupae,  were 
released into the glasshouse. In the glasshouse, 
100 pots of ca. 60 days-old Brassica oleracea L. 
var. acephala DC were arranged into three 
blocks, each with 33, 34 and 33 pots. The number 
of larvae ( 2nd-4th instars ) and pupae were 
investigated every 3-5 days. The temperature 
and humidity were recorded every day. The  
results were compared with the simulation 
results by running program FDMSLBH. The  
released fifteen pairs of adults were assumed 
to be randomly distributed. 
 
(2) Comparison between population growth in 
   glasshouse and in computer simulation 
 
   The population growth curves obtained 
in the glasshouse release experiment are 
 
 
 
 
 

 
illustrated  in Fig. 11 and  Fig. 12. Due to the  
fact that the life table  data  were  recorded 
under special laboratory  conditions,  it was 
reasonable to believe that  there  was a dif- 
ference between the results  of laboratory and 
of glasshouse conditions.  Because the exact 
differences in growth rate, developmental rate  
and fecundity have not been  experimentally 
studied, the half, the fifth, the tenth  and the  
twentieth of the age-stage-specific fecundity 
were used in this preliminary simulation. The  
simulated growth curves are also  plotted  in 
Fig. 11 and Fig. 12. The curves of  simulated 
and observed  variance/mean  ratios  were 
plotted  against  time ( Fig. 13 ). Due to the 
randomized random numbers  were  used in  
FDMSLBH, different  results  have been ob- 
tained from  every simulations. ( If the same 
result was obtained  from every  simulation, 
then the same sequence  of random  number 
had been used. This must be carefully avoided 
in  programming ). This  can  be used  to  
simulate  the variability in population growth 
and  dispersion,  which  was  as results of 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. The observed (? -?) and four simulated population growth curves for larvae 
       ( 2nd-4th instars ) of P. xylostella. The simulations were conducted by using 

 f i j/2 (? -?), f i j /5 (△-△), f i j /10 (? -?) and f i j/ 20 (▽-▽), respectively.  
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Fig. 12. The observed (? -?) and four simulated population growth curves for  
pupal stage of P. xylostella. The simulations were conducted by using 

      f i j/2 (? -?), f i j /5 (△-△), f i j /10 (? -?) and f i j/ 20 (▽-▽), respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Fig. 13. The  observed (? -?) and three  simulated (? -?, △-△, ? -? )  curves of 
variance / mean ratios for diamondback moth  ( P. xylostella )( 2nd-4th 
instar larvae and pupae together). The three simulations were conducted 
by using the same f i j/10.  
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Fig. 14. Examples of computer mapping for the field distribution of P. xylostella 
      at different time.  The  symbols are “ ”‧ -egg,  “-”-larva, “i”-female 
      and “/”-male. Overprinting  allowed all stages to be printed in a single 

map. Due to reductions, the symbols cannot be distinguished. 
 

dispersion in different directions or due to the 
occurrence of mortality, when movement 
ended in a hostile plant ( i. e. already with a 
high pest density ). This kind of variability 
has not been noted in other stochastic models, 
but it does play an important role in the true  
ecosystem ( e. g. Jennings et al., 1983 ). Al- 
though there were differences among simulated 
and observed curves, but the tendencies were 
alike. For this preliminary simulation, further 
explanations to these differences were not 
given. 

Examples of computer mapping are 
displayed in Fig. 14. Different symbols were 
used to represent individuals of different stages 
and the overprinting allowed all stages to be 
printed in a single map. However, due to  
several reductions, the symbols cannot be 
distinguished. The mapping results of each 
simulation were also different from one 
another. This can be used to study the  
variability of field distribution.  

DISCUSSION 
 

In this paper, two new methods with 
respect to population growth of insects and  
mites have been introduced. The first method 
is concerned with stage overlapping. Here, 
the stage overlapping does not mean simply 
the occurrence of different stages in field at  
the same time. It means the overlapping of 
different stages during the development process 
of individuals reproduced at the same day.  
For a more precise and reasonable study of 
population growth, such stage overlapping 
phenomenon should never be neglected either 
in theoretical or applied ecology. In this 
paper, we have developed a straightforward 
and biologically realistic method, in which 
the survival rate is taken as a composition of  
growth rate and developmental rate and the 
age-stage-structure of population is given in a 
multiple column matrix. The detail algorithms 
for this new method have been described in 
respective sections. 
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However, the population growth is not 
merely an event of numerical change with 
time. As a matter of fact, individuals of 
population distributed themselves rather un- 
uniformly in fields ( Taylor 1961). If we study 
the population growth without considering 
the spatial distribution, then we may lose 
ourselves in numbers and overlook some  
important features. On the  other hand, if we 
study the spatial distribution but without 
considering the population growth, then we  
will  lose the dynamic feature of spatial 
distribution. For the study of the growth of 
a  “true” population, we have to set the 
population into a space and consider the  
changes in number and spatial distribution at  
the same time. Using a multidimensional  
matrix it is possible to do this work; the  
population is then taken as composition of 
subpopulations, each subpopulation lives on  
its host plant and has its own age structure 
( or age-stage-structure ). Thus, we have the 
age structure and spatial distribution in one 
model. The basic concepts have been discussed 
in this paper. For practical application to  
specific pest and host plant, other relevant 
factors must be taken into account. 

The multiple column matrix model is in  
principle developed for theoretical study on 
population growth with stage grouping. The  
multidimensional matrix model is then for 
the combined study of population growth and  
dispersion. If the predator or parasite is going 
to be included in this model, a five dimensional 
matrix is necessary. The matrix SYSTEM 
( SPECIES,AGE,STAGE,COLUMN,ROW ) can 
be assigned for system simulation. Then, 
the experimental results such as Huffaker’s  
report ( 1958 ) perhaps can be studied using 
this method. Furthermore, when using these 
concepts to study the intra-plant distribution 
on large host plant, such as trees, then 
another subscript HEIGHT must be used 
to construct  the spatial  s tructure；  for  
example, POPU( AGE,STAGE,COLUMN,ROW,  
HEIGHT ) for the single species model or 
SYSTEM ( SPECIES,AGE,STAGE,COLUMN, 

 
ROW,HEIGHT ) for system simulation. Of 
course, it needs large memory to store the 
matrix POPU and SYSTEM, and the simula- 
tion program can be run only on a large  
computer. However, it is not necessary to  
assign a large matrix for a field of hectares, 
but it must be large enough to reproduce the  
important features of a “real” population. If 
the simulation can give more precise infor- 
mation about field distribution, then it is 
possible to know how many host plants bear  
a pest number over the predefined economic 
injury level, and this will be better than to  
use a single value, the mean density. On the 
other hand, if the growth and dispersion of 
vector population can be precisely studied, 
then the research on epidemiology of plant 
disease transmitted by insect can be improved. 

The combined study of the growth and  
dispersion is important not only for simu- 
lation works using calendar time, but also for 
those using physiological time. We  are  
interested in incorporating these concepts in  
such simulation models. The main ongoing 
works in our laboratory are the further 
development of theories of population growth  
and their practical use in system simulation. 
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研 究 昆 蟲 族 ? 生 態 的 兩 種 新 方 法 

 
齊       心      劉       璽 

 
     依據齡期頻度分佈，本文利用一個多行矩陣表示具變態之動物族? 的年齡與齡期結構。用此

新方法，可以研究昆蟲及?蜱族? 之增長過程 ( 包含雌雄兩性 ) ，並適當的組合齡期。族群增

長、內在增殖率以及穩定年齡與齡期分佈之計算，均詳述於文中。 

     為模擬田間族? 生態，本文利用一多維矩陣表示寄主植物之空間分佈及害蟲族? 之年齡與齡

期結構，並設計電腦程式以同時模擬田間族? 之生長與分散。利用這兩種方法可以模擬農業生態

系。 
 
 
 
 







 


