Net reproductive rate

The total number of offspring that an average individual (including females, males, and those died in immature stage) can produce during its lifetime. The magnification that a population will increase after one generation.

Chi (1988) proved

where N_f is the number of female adults emerged from the total individuals N used at the beginning of life table study and F is the mean fecundity of this N_f females. This relationship is valid for the age-stage, two-sex life table and female age-specific life table. For two-sex life table: $N-N_f = N_d + N_m$ (number of dead in preadult stage + number of male adults). For female life table: $N-N_f = N_d$ (number of dead in preadult).

Finite rate of increase

The finite rate is the population growth rate as time approaches infinity and population reaches the stable age-stage distribution. The population size will increase at the rate of λ per time unit.

Intrinsic rate of increase

It is the population growth rate as time approaches infinity and population reaches the stable age-stage distribution. The population size will increase at the rate of e^r per time unit.

one.

Intrinsic rate of increase

$$\sum_{x=0}^{\infty} \left(e^{-r(x+1)} l_x m_x \right) = 1$$

$$\sum_{x=0}^{\infty} e^{-r(x+1)} l_x m_x = 1$$

$$l_{x} = \sum_{j=1}^{m} S_{xj}$$
$$m_{x} = \frac{\sum_{j=1}^{m} S_{xj} f_{xj}}{\sum_{j=1}^{m} S_{xj}} = \frac{\sum_{j=1}^{m} S_{xj} f_{xj}}{l_{x}}$$

m

$$\sum_{x=0}^{\infty} e^{-r(x+1)} l_x m_x = 1$$

TWOSEX life table uses this one.

How many digits should you report?

 $\lambda = e^{r}$ $\lambda = 1 \Leftrightarrow r = 0$ $r = 0.1460, \lambda = 1.15$ $r = 0.1460, \lambda = 1.1572$

Mean generation time

It is the period that a population requires to increase to R_0 -fold of its size as time approaches infinity and the population settles down to a stable age-stage distribution.

$$\lambda^{T} = R_{0} \qquad T = \ln R_{0} / \ln \lambda$$
$$\lambda = e^{r}$$
$$\lambda^{T} = e^{rT} = R_{0} \qquad T = \frac{\ln R_{0}}{r}$$

Stable age-stage distribution

It is the proportion of individuals in each age-stage unit as population increases at the rate of λ (or e^r) per time unit. This distribution will remain constant.

Age	Egg	Larva	Pupa	Female	Male	Age	Egg	Larva	Pupa	Female	Male	
	1						13 97					
1	- 0 8755	_	_	_	_	1	12 24	_	_	_	_	
2	0.0755	_	_	_	_	2	10 71	_	_	_	_	
2	0.7005	0 4027	_	_	_	2	3 75	5 63	_	_	_	
3	0.2004	0.4027	_	_	_	3	1 61	5.05	_	_	_	
-	0.11/5	0.4701	_	_	_	т Б	1.0 1 0 7100	6 47	_	_	_	
5	0.0514	0.405	-	-	-	5	0./109	0.47 5.66	-	-	-	
07	-	0.4054	0.045	-	-	07	-	5.00	0.6294	-	-	
/	-	0.3549	0.0394	-	-	/	-	4.96	0.5511	-	-	
8	-	0.2762	0.0691	-	-	8	-	3.86	0.965	-	-	
9	-	0.1209	0.1511	-	-	9	-	1.69	2.11	-	-	
10	-	0.0794	0.1588	-	-	10	-	1.11	2.22	-	-	
11	-	0.0463	0.1622	-	-	11	-	0.6476	2.27	-	-	
12	-	0.0203	0.1623	-	-	12	-	0.2835	2.27	-	-	
13	-	-	0.1421	-	-	13	-	-	1.99	-	-	
14	-	-	0.1089	0.0156	-	14	-	-	1.52	0.2173	-	
15	-	-	0.0817	0.0136	-	15	-	-	1.14	0.1903	-	
16	-	-	0.0358	0.0358	0.0119	16	-	-	0.4997	0.4997	0.1666	
17	-	-	0.0209	0.0313	0.0209	17	-	-	0.2917	0.4375	0.2917	
18	-	-	-	0.0274	0.0274	18	-	-	-	0.3831	0.3831	
19	-	-	-	0.024	0.024	19	-	_	-	0.3354	0.3354	
20	-	-	-	0.021	0.007	20	-	-	-	0.2936	0.0979	

Life expectancy
$$(e_{xj})$$

It is the time that an individual of age x and stage y is expected to live. It is calculated as

$$e_{xj} = \sum_{i=x}^{\infty} \sum_{y=j}^{m} S'_{iy}$$

where s'_{iy} is the probability that an individual of age x and stage j will survive to age i and stage y. s'_{iy} is calculated by assuming $s'_{xj} = 1$.

Reproductive value (v_{xj})

Fisher (1930) defined the reproductive value as the contribution of individuals of age x and stage y to the future population. In the age-stage, two-sex life table it is calculated as

$$v_{xj} = \frac{e^{r(x+1)}}{S_{xj}} \sum_{i=x}^{\infty} e^{-r(i+1)} \sum_{y=j}^{m} S'_{iy} f_{iy}$$

This formula is based on the age-stage, two-sex life table. You have to cite following three papers in addition to Fisher (1930):

Huang, Y. B. and Hsin Chi. 2011. The age-stage, two-sex life table with an offspring sex ratio dependent on female age. Journal of Agriculture and Forestry 60(4): 337-345.

Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014a. Population and damage projection of *Spodoptera litura* (F.) on peanuts (*Arachis hypogaea* L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci. 70: 805 -813.

Tuan, Shu-Jen, Chung-Chieh Lee and Hsin Chi. 2014b. Population and damage projection of *Spodoptera litura* (F.) on peanuts (*Arachis hypogaea* L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci. 70: 1936.