Chapter 6
 TIMING：
 Population projection

齊 心 教授
Prof．Dr．Hsin Chi
Department of Plant Production and Technologies，Faculty of Agricultural Sciences and Technologies，Niğde University，Turkey．
Adjunct professor，National Chung Hsing University，Taiwan，Republic of China Visiting professor，Northwest A\＆F University，China Visiting professor，Fujian Agriculture and Forestry University，China

Population projection based on age－ stage，two－sex life table

TIMING－MSChart

Copyright 1997～2016 Prof．Dr．Hsin Chi
3／20／2016
Page 7

Population Projection by using TIMING－MSChart

Copyright 1997～2016 Prof．Dr．Hsin Chi
3／20／2016

Attention

If you run projection using the age-stage, twosex life table and assume the fecundity is zero, you will get exactly the same $s_{x j}$ curves like your life table result.
\square It shows that the age-stage, two-sex life table is correct.

- However, if you use the traditional female agespecific life table, your projection result will be different from your life table record.

Copyright 1997~2016 Prof. Dr. Hsin Chi
3/20/2016
Page 14

A data file for TIMING-MSChart is automatically prepared by TWOSEX.
... _15_For_TIMING_program.txt
You should copy it to a new folder. You can edit the data file. But, you have to be very careful.

Copyright 1997~2016 Prof. Dr. Hsin Chi 3/20/2016 Page 15

Data format: Basic information

"Description: the next three lines are project, date and user name."
"Example of life table raw data"
"2009.01.09"
"Chi, H."
"Description: Last age group is 20 , number
of stages is $5^{\prime \prime}$
20,5

Copyright 1997~2016 Prof. Dr. Hsin Chi
3/20/2016

Female fecundity

"Description: the female stage is 4 "
4
"Description: modify the following decrease rate for Timing program to lower the fecundity."
1
"Description: there are 7 fecundity data for female"
0,15,2.6667,13,8.6667,5.3333,3.3333

Modify the fecundity (matrix F)

"Description: modify the following decrease rate for Timing program to lower the fecundity."
1 (e.g., $0.2,0.5$, etc.)
"Description: there are 90 fecundity data for female"
$0,0,0,0,0,0,0,0,0,0,2.45,6,5.8,3.6842,0, .3684,3.9474$, 4.6842,4.1053,1.4737, 2.8947,6.1579,1.8421, 4.4737,6.9474,5.3158,3.4211,7.1053,5.3684,10,20.5 263,6.3684,6.1579,8.4737,13.6316,14.9474,11.2
You can change any data, but never delete it.
Copyright 1997~2016 Prof. Dr. Hsin Chi 3/20/2016
Page 19

Matrix G

"Description: modify the following decrease rate for Timing program to lower the growth rate." 1
"Description: the next lines are the growth rates for each stage."
1,1,.4,.5,.5,0
1,1,.8889,1,.8889,.5,.75,.6667,.5,0
$1,1,1,1,1,1,1, .875, .8571, .5, .6667,0$
$1,1,1,6667,1,1,0$
1,1,1,.3333,0

Matrix D

"Description: modify the following decrease rate for Timing program to lower the developmental rate."
1
"Description: next lines are developmental rates" 0,0,.6,.5,.5,1
0,0,.1111,0,.1111,.375,.25,.3333,.5,0
$0,0,0,0,0,0,0, .125,0, .3333,0, .5$
$0,0,0,0,0,0,0,0,0, .1667, .3333, .5$

Copyright 1997~2016 Prof. Dr. Hsin Chi	3/20/2016	Page 21

Modify G and D

"Description: the next lines are the growth rates for each stage."
1,1,1,.29,1,1,1,1,1,0
.9859,.0143,0
1,.4429,.0938,.6667,.5,1,1,1,1,1,0
$.9487, .3485, .2083,1,1,1, .3333,1, .5,1,0$
You can change any data, but never delete it. Elements of matrices G and D are related and should be $0 \leq g_{x j} \leq 1,0 \leq d_{x j} \leq 1$, and $0 \leq d_{x j}+g_{x j} \leq 1$.

Copyright 1997~2016 Prof. Dr. Hsin Chi
3/20/2016
Page 22

Initial population structure

"Description: next lines are initial population structure (age, stage, number), end with $0,0,0$ " $0,1,10$ (age 0 , stage 1,10 individuals) 0,0,0
"Description: Enter time for next release. Zero means no additional release."
0
"Description: Enter population structure (age, stage, number) of next release, end with $0,0,0^{\prime \prime}$ 0,0,0

Copyright 1997~2016 Prof. Dr. Hsin Chi	3/20/2016	Page 23

How to edit the initial population

"Description: next lines are initial population structure (age, stage, number), end with $0,0,0$ " $\mathbf{0 , 1 , 1 0}$ ($\mathbf{1 0}$ individuals of age 0 and stage 1). 0,0,0
or
$\mathbf{1 0 , 4 , 1 0}$ (10 individuals of age 10 and stage 4) $\mathbf{1 0 , 5 , 1 0}$ (10 individuals of age 10 and stage 5) 0,0,0

Creative thinking

- In field, we cannot sample all life stages of an insect population. In most cases, only individuals of a specific life stage is sampled.
- How can we calculate the growth rate of a specific stage (e.g., larval stage)?

Stage growth rate in log or \ln scale

$$
\begin{gathered}
\phi_{j, t}=\frac{\log \left(n_{j, t+1}+1\right)}{\log \left(n_{j, t}+1\right)} \\
r_{j, t}=\ln \left(\frac{n_{j, t+1}+1}{n_{j, t}+1}\right)=\ln \left(n_{j, t+1}+1\right)-\ln \left(n_{j, t}+1\right)
\end{gathered}
$$

J. Econ. Entomol. 108(4): 1466-1478 (2015) (Forum)

Copyright 1997~2016 Prof. Dr. Hsin Chi

Attention!

■ If you simulate the population growth for 60 days, then you will get the population size from 0 to 60 d (61 data). But you will only get the growth rate data for time 0 to 59 (60 growth rate).
If you need the growth rate data point at 60 d for the figure of growth rate, you have to run the simulation to 61 d .

Stage-specific weighting coefficient

$$
w_{j}=\frac{c_{j}}{c_{\text {highest }}}
$$

$C_{\text {highest }}$: the highest stage mean daily consumption rate

Cumulative insect-days (stage-days)

CumSD $=\sum_{t=0}^{T} \sum_{j=1}^{m} \sum_{x=0}^{\infty} n_{x j}(t)$
T : the simulation time m : number of life stages $n_{x j}$: number of individuals of age x and stage j

Weighted insect-day at time t

$$
n_{w}(t)=\sum_{j=1}^{m}\left(\sum_{x=0}^{\infty} n_{x j}(t) \cdot w_{j}\right)
$$

Weighted insect-day shows the weighted effect of insect population to crop (or predator to pest) by taking the different consumption rate into account.

Pest control information

"Description: no. treatment = 1 (If there are $2 \ldots$...
1
"Description: first treatment at 10th day"
10
"Description: Critical cumu. insect day is on 15th day"
15
"Line A: Code, effective duration, time to next treatment " "DDT",1,10
"Description: stage mortality due to treatment" $0,0.9,0.9,0.9,0.9,0.9$

Pest control according to predefined schedule

Copyright 1997~2016 Prof. Dr. Hsin Chi 3/20/2016 Page 41

Two treatments

"Description: Density-dependent mortality coefficient for density below K and over $\mathrm{K}^{\prime \prime}$.2,1
"Description: number of treatment $=1 "$
2
"Description: first treatment at 10th day" 10

Control information for 2 treatments

"Description: Code treatment is DDT, effective duration is one day, interval to next treatment is 10 days" "DDT",1,10
"Description: stage mortality due to treatment" $0,0.9,0,0.9,0.9$
"Description: Code treatment is Spinosad, effective duration is one day, interval to next treatment is 10 days"
"Spinosad",1,10
"Description: stage mortality due to treatment" $0,0.9,0,0.9,0.9$

One treatment, 3 effective days

"Description: Code treatment is DDT, effective duration is one day, interval to next treatment is 10 days"
"DDT",3,10
"Description: stage mortality due to treatment"
$0,0.9,0.9,0.9,0.9$
$0,0.8,0.7,0.7,0.6$
$0,0.5,0.5,0.4,0.3$
"Description: Code treatment is DDT, effective duration is one day, interval to next treatment is 10 days" "DDT",1,10
"Description: stage mortality due to treatment" $0,0.9,0.9,0.9,0.9$
Copyright 1997~2016 Prof. Dr. Hsin Chi
3/20/2016

How to edit the weighting coefficients

"Description: next lines are age intervals, stage name, weighting coefficient, density-dependent mortality"
0,9, "Egg", $\mathbf{0}, .2$ (eggs don't cause damage)
4,6,"L1",0.1,.8 (L1 equals $\mathbf{0 . 1}$ of L4)
5,15,"L2", 0.4,. 8 (L2 equals $\mathbf{0 . 4}$ of L4)
You can also use the real "consumption rate", "injury rate", rearing cost, etc. for weighting coefficients.

Copyright 1997~2016 Prof. Dr. Hsin Chi
3/20/2016

Advantages to Using the AgeStage, Two-sex Life Table

■ Because age-stage, two-sex life table can take the stage differentiation into consideration, it can be used to simulate the effect of stagespecific mortality properly, while the female age-specific life table is incapable in this.
■ Population projection based on age-stage, twosex life table can simulate the population growth under pesticide control.

Please prepare following graphs
Population structure vs. time.
■ \log (population structure) vs. time.
■Weighted population size vs. time.
\square Stage size vs. time.
■Stage size every 10 days vs. time.

Copyright 1997~2016 Prof. Dr. Hsin Chi	3/20/2016	Page 59

Simulation with two releases

"Description: next lines are initial population "
3,1,10
0,0,0
"Description: Enter time for next release. Zero means no additional release."
10 (The second release is on day 10)
"Description: Enter population structure (age, stage, number) of next release, end with $0,0,0$ "
3,1,10
0,0,0

Copyright 1997~2016 Prof. Dr. Hsin Chi	3/20/2016	Page 62

Life table + predation rate
 \rightarrow predator-prey relationship and biological control

Copyright 1997~2016 Prof. Dr. Hsin Chi 3/20/2016
Page 63

Timing the release of predators: filling up the predation gap

Journal of Economic Entomology 106(1): 1-9.

Copyright 1997~2016 Prof. Dr. Hsin Chi
3/20/2016
Page 64

Difference between reality and sampling

Difference between reality and sampling

Reality

3/20/2016

Fitting sampling data?

- Many entomologists fit the field sampling data by using polynomial regression or multiple regression. Because most field samplings are carried out at interval and there are many missing data, you should be cautious.

Imagination, reality, and theory

- Imagination and reality have little in common - Amour (2012)
■Theory and reality have lots in common. Theory is the soul of reality. Reality is composed of theories and case-specific data - Chi.
\qquad
Copyright 1997~2016 Prof. Dr. Hsin Chi
3/20/2016
Life table + consumption rate $\rightarrow \mathrm{ET}$, timing of pesticide application?

Copyright 1997~2016 Prof. Dr. Hsin Chi 3/20/2016 Page 69

Teşekkür ederim!

